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On a variance associated with the
distribution of general sequences

in arithmetic progressions. II

By R. C. Vaughan

Department of Mathematics, Huxley Building, Imperial College of Science,
Technology and Medicine, 180 Queen’s Gate, London SW7 2BZ, UK

Asymptotic formulae of Montgomery–Hooley type are obtained for general sequences
which, for relatively small moduli, have an approximate asymptotic distribution in
each residue class.
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1. Introduction

We continue our study of the variance associated with the distribution of general
sequences in arithmetic progresions. In particular, we turn our attention to the situ-
ation considered by Hooley (1975a). Thus, we are interested in the extent to which
it is possible to obtain an asymptotic formula for the variance

V (x,Q) =
∑
q6Q

∑
a∈A(q)

|A(x; q, a)− f(q, a)Φ(x)|2, (1.1)

where A(q) is a suitable set of residue classes modulo q, A(x; q, a) denotes

A(x; q, a) =
∑
n6x

n≡a (mod q)

an, (1.2)

and f and Φ appropriately reflect the local and global properties, respectively, of the
real sequence {an}.

As remarked upon in Vaughan (this volume), for reasons of practical expediency,
it is usual to introduce a system of weights so that the main terms f(q, a)Φ(x) are
transformed into f(q, a)x. Having illustrated this procedure at some length in our
previous work, and there being no need to dwell on the point any further, we satisfy
ourselves with the observation that such tranformations can also be applied in the
work described herein and with the same general conclusions modulo any natural
adjustments which may be required by the situation in hand.

The situation of greatest interest is normally that in which the set of residues A(q)
includes all those a for which A(x; q, a) has a positive asymptotic density as x→∞.
Thus, where necessary by an appropriate adjustment to f(q, a), we may suppose that
A(q) is a complete set of residues modulo q. Finally, in the vast majority of cases of
practical interest the ‘local factor’ f(q, a) which arises depends on (a, q) rather than
a (and when an is specialized to be the indicator function of a set of integers this is
the precise situation which is studied by Hooley (1975c)). Thus in this memoir we
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794 R. C. Vaughan

suppose that V (x,Q) satisfies not (1.1) but

V (x,Q) =
∑
q6Q

q∑
a=1

|A(x; q, a)− f(q, (q, a))x|2. (1.3)

Here we suppose that there is an increasing function Ψ(x), with Ψ(x) > log x for all
large x, Ψ(1) > 0 and ∫ x

1
Ψ(y)−1 dy � xΨ(x)−1,

such that

A(x; q, a) = xf(q, (q, a)) +O

(
x

Ψ(x)

)
(1.4)

uniformly for all real x > 1 and natural numbers q and a, and we note that imme-
diately from these assumptions we have Ψ(x)� x.

The most natural assumption concerning the an in the argument we have in mind
is not that the sequence an be the indicator function of a set but rather that it be
bounded in mean square, or, more precisely, that∑

n6x
a2
n � x (1.5)

uniformly for all positive real x. The nature of our results depends on the properties
of the arithmetical function

g(q) = φ(q)
(∑
r|q

f(q, r)µ(q/r)
)2

. (1.6)

One consequence of (1.5) is that the series
∞∑
q=1

g(q)

converges, and the quality of our main conclusions depends on the rate of convergence
of this series and the extent to which

x
∞∑
q=1

g(q)

is a good approximation to the left-hand side of (1.5).
With the above definitions it is now possible to state a simple conclusion.

Theorem 1.1. Suppose that (1.5) holds and that

Q >
√
x log 2x, (1.7)

and let

E(z) =
∫ z

1

∑
q>y

g(q) dy (1.8)

and

U(x,Q) = V (x,Q)−Q
∑
n6x

a2
n +Qx

∞∑
q=1

g(q). (1.9)
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Distribution of sequences in arithmetic progression. II 795

Then E(z) = o(z) as z →∞ and

U(x, q)� x3/2 log x+ x2(log 2x)9/2Ψ(x)−1 + x2(log x)4/3Ψ(x)−2/3 +Q2E(x/Q).

By comparison, Hooley (1975), in the special case that an is an indicator function
and that (1.4) holds with Ψ(x) = (log x)A for every fixed positive A, has shown that

V (x,Q)� Qx+ x2(log x)−A.

One might hope that the term containing Ψ(x)−2/3 could be dispensed with, but
all the internal evidence, either from the proof given here or Hooley’s (1975) method,
suggests that to be successful in this endeavour some information is required con-
cerning the behaviour of the an in short intervals, i.e. of A(u+ v; q, a)−A(u; q, a).

By Parseval’s identity ∫ 1

0
|G(α)|2 dα =

∑
n6x

a2
n,

where

G(α) =
∑
n6x

ane(nα) (1.10)

and it is not hard to show on assumption (1.4) that the contribution from the con-
sequential natural major arcs is asymptotically

x

∞∑
q=1

g(q).

Thus the main term

Q
∑
n6x

a2
n −Qx

∞∑
q=1

g(q)

in theorem 1.1 is closely related to the minor arcs. In many of the common situations
matching our conditions it is known that the contribution from the minor arcs is
smaller than that from the major arcs. For example, this is so when an is the indicator
function of the k-free numbers (k > 2). Thus, in such a situation the two expressions
in the main terms largely cancel. However, we can then anticipate that provided we
have some knowledge of the asymptotic behaviour of their difference, and perhaps
also of E(y), it is still possible to obtain the asymptotic behaviour of V (x,Q). That
further information regarding E(y) may be required is born out by the case of k-free
numbers where the final main term is indeed of the same order of magnitude as
Q2E(x/Q) for a large range of Q.

Theorem 1.2. Suppose that there are positive real numbers η and c such that
0 < η < 1 ∑

n6x
a2
n − x

∞∑
q=1

g(q) = o(x(2+η)/(2+2η)) (1.11)

as x→∞ and ∑
q>y

g(q) ∼ cy−η (1.12)
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796 R. C. Vaughan

as y →∞. Suppose further that

Q >
√
x log 2x.

Then

V (x,Q) = Q2M(x/Q) +O(x3/2 log x+x2(log 2x)9/2Ψ(x)−1 +x2(log x)4/3Ψ(x)−2/3),

where

M(y) ∼ c−2ζ(−η)
1− η2 y1−η

as y →∞.

Theorem 1.2 can be applied in the case when an is the indicator function of the
k-free numbers, and it gives a main term of the general form

CQ2(x/Q)1/k.

However, it is possible to make use of the special features of the sequence of k-free
numbers so as to obtain an error term superior to the one given here (see Croft 1975),
and we intend to return to this problem in a future paper.

The method of proof of theorem 1.2 is equally valid under more general conditions
than (1.11) and (1.12). For example, with appropriate adjustments to (1.11) and the
conclusion, condition (1.12) could be replaced by∑

q>y

g(q) ∼ κ(y), (1.13)

where κ(y) is a suitably smooth function tending to zero through positive values.
It is natural to ask whether the main terms in theorem 1.1 always cancel, and we

show that this is not so by the construction of an example. The point is that the
example places a positive proportion of the mass in∫ 1

0
|G(α)|2 dα

on the minor arcs.

Theorem 1.3. Let λ = 1
2(
√

5− 1) and θ ∈ (0, 1), and let an be 1 when {λn} < θ

and be 0 otherwise. Then (1.4) holds with f(q, (a, q)) = θ/q and Ψ(x) = x1/3, and
∞∑
q=1

g(q) = θ2,

but ∑
n6x

a2
n = θx+O(x2/3).

We give an elementary proof of theorem 1.3. By invoking the Erdős–Turán the-
orem, or Selberg’s magic functions, it would be possible to take Ψ(x) = x1/2 and
achieve an error O(x1/2) in the final conclusion.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Distribution of sequences in arithmetic progression. II 797

2. Preliminary lemmata

Here we record some useful consequences of assumptions (1.4) and (1.5).

Lemma 2.1. Assume (1.4) and (1.5). Then∑
q6Q

∑
r|q
|f(q, r)|σ(q)

q
� (log 2Q)5/2 (2.1)

and ∑
q6Q

∑
r|q
|f(q, r)|d(q/r)� (log 2Q)7/2. (2.2)

Proof . We give first the proof of (2.2). When r|q the number of integers a with
1 6 a 6 q and (q, a) = r is φ(q/r). Thus

|f(q, r)| = 1
φ(q/r)

q∑
a=1

(q,a)=r

|f(q, (q, a))|.

Hence, by (1.4), ∑
q6Q

∑
r|q
|f(q, r)|d(q/r) = lim

x→∞λ(x),

where

λ(x) = x−1
∑
q6Q

∑
r|q

d(q/r)
φ(q/r)

q∑
a=1

(q,a)=r

∣∣∣∣ ∑
n6x

n≡a (mod q)

an

∣∣∣∣
6 x−1

∑
n6x
|an|

∑
q6Q

d(q/(q, n))
φ(q/(q, n))

.

The innermost sum here is∑
r6Q
r|n

∑
s6Q/r

(s,n/r)=1

d(s)
φ(s)

�
∑
r6Q
r|n

(log 2Q)2.

Hence, by Cauchy’s inequality and (1.5),

λ(x)2 � x−1
∑
n6x

(∑
r6Q
r|n

1
)2

(log 2Q)4 � (log 2Q)7.

To prove (2.1) we argue in a similar vein. We observe that it suffices to bound

x−1
∑
n6x
|an|

∑
q6Q

σ(q)
qφ(q/(q, n))

.

The inner sum here is
�
∑
r6Q
r|n

σ(r)
r

log 2Q.
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798 R. C. Vaughan

Thus it suffices to bound ∑
s6Q

1
s
x−1

∑
n6x
s|n

|an|
∑
t6Q/s
t|n/s

1.

By Cauchy’s inequality and (1.5), the sum over n is

�
(
x−1

∑
n6x
s|n

( ∑
t6Q/s
t|n/s

1
)2)1/2

� s−1/2(log 2Q)3/2,

and (2.1) follows. �

Lemma 2.2. Suppose that (1.4) holds. Then

f(r, r) =
q∑
a=1
r|a

f(q, (q, a)) (2.3)

and ∑
r|q

µ(r)f(sr, sr) = φ(q)f(sq, s). (2.4)

Proof . By (1.4)
f(r, r) = lim

x→∞x
−1
∑
n6x
r|n

an.

The sum here is
q∑
a=1
r|a

∑
n6x

n≡a (mod q)

an,

which gives (2.3). Then, on replacing r by sr, we obtain∑
r|q

µ(r)f(sr, sr) =
∑
r|q

µ(r)
sq∑
a=1
sr|a

f(sq, (sq, a))

=
q∑
b=1

(q,b)=1

f(sq, s).

�

Let
J(β) =

∑
n6x

e(nβ), (2.5)

ν(q) =
∑
s|q

f(q, s)µ(q/s) (2.6)
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and

∆(q, a, β) = G(a/q + β)− ν(q)J(β). (2.7)

Lemma 2.3. Suppose that (1.4) holds. Then
q∑
a=1

(a,q)=1

∆(q, a, β)� σ(q)
x

Ψ(x)
(1 + x|β|), (2.8)

q∑
a=1

(a,q)=1

|∆(q, a, β)|2 � q2x2

Ψ(x)2 (1 + x|β|)2, (2.9)

and when (a, q) = 1,

lim
x→∞x

−1G(a/q) = ν(q). (2.10)

Proof . We have

G(a/q + β) =
q∑
r=1

e(ar/q)
∑
n6x

n≡r (mod q)

ane(nβ)

and
q∑
r=1

e(ar/q)f(q, (q, r)) =
∑
s|q

q/s∑
t=1

(q/s,t)=1

e

(
at

q/s
f(q, s)

)

=
∑
s|q

µ(q/s)f(q, s).

Therefore, by (2.5)–(2.7),

∆(q, a, β) =
q∑
r=1

e(ar/q)
( ∑

n6x
n≡r (mod q)

ane(nβ)−
∑
n6x

f(q, (q, r))e(nβ)
)
. (2.11)

We concentrate first on (2.8). We sum the above over a with 1 6 a 6 q and
(q, a) = 1. We take the sum over a inside the sum over r. The sum of e(ar/q) over
these a is

∑
s|(q,r) sµ(q/s). Then we interchange the sums over r and s and (2.11)

becomes ∑
s|q

sµ(q/s)
q∑
r=1
s|r

( ∑
n6x

n≡r (mod q)

ane(nβ)−
∑
n6x

f(q, (q, r))e(nβ)
)
.

By (2.3) this is ∑
s|q

sµ(q/s)
∑
n6x
s|n

(an − f(s, s))e(nβ),
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800 R. C. Vaughan

and by (1.4) and partial summation this is

� σ(q)
x

Ψ(x)
(1 + x|β|),

which gives the first part of the lemma.
We now transfer our attention to (2.9). By (2.11) and the orthogonality of the

additive characters we have
q∑
a=1

(a,q)=1

|∆(q, a, β)|2 6 q
q∑
r=1

( ∑
n6x

n≡r (mod q)

ane(nβ)−
∑
n6x

f(q, (q, r))e(nβ)
)2

.

We now apply partial summation to the sums over n and invoke (1.4) once more.
This gives (2.9). To complete the proof of the lemma we simply observe that (2.9)
implies that limx→∞ x−1∆(q, a, 0) = 0. �

Lemma 2.4. Suppose that (1.4) holds. Then

q
∑
r|q

φ(q/r)f(q, r)2 =
∑
r|q

φ(r)
(∑
s|r

f(r, s)µ(r/s)
)2

.

Proof . We evaluate

λ = lim
x→∞x

−2
q∑
a=1

∣∣∣∣∑
n6x

ane(an/q)
∣∣∣∣2

in two different ways. By the orthogonality of the additive characters, the sum over
a is

q
∑
m6x

∑
n6x

n≡m (mod q)

aman = q

q∑
a=1

( ∑
m6x

m≡a (mod q)

am

)2

,

and so

λ = q

q∑
a=1

f(a, (q, a))2 = q
∑
r|q

φ(q/r)f(q, r)2.

On the other hand, the sum over a is also∑
r|q

r∑
b=1

(b,r)=1

∣∣∣∣∑
n6x

ane(bn/r)
∣∣∣∣2,

and by (2.9) limx→∞ x−1∆(q, a, 0) = 0. Thus, by (2.5)–(2.7),

λ =
∑
r|q

r∑
b=1

(b,r)=1

(∑
s|r

f(r, s)µ(r/s)
)2

,

which completes the proof. �
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Lemma 2.5. Assume (1.4) and (1.5), and that g is defined by (1.6). Then the
series

∞∑
q=1

g(q)

converges.

Proof . By the large sieve inequality (see, for example, Davenport 1980, § 27, the-
orem 2), ∑

q6Q

q∑
a=1

(a,q)=1

|G(a/q)|2 6 (x+Q2)
∑
n6x

a2
n.

We divide both sides by x2 and consider the limit superior as x → ∞. Hence, by
(1.5), (2.6), (2.10) and (1.6),∑

q6Q
g(q) =

∑
q6Q

φ(q)
(∑
s|q

f(q, s)µ(q/s)
)2

� 1,

and this holds uniformly for all Q. �

3. Initial arrangements

We have

V (x,Q) = 2S1 − 2S2 + S3 + [Q]
∑
n6x

a2
n, (3.1)

where

S1 =
∑
q6Q

∑
n6x

∑
m<n
q|n−m

aman, (3.2)

S2 =
∑
q6Q

q∑
a=1

xf(q, (q, a))
∑
n6x

n≡a (mod q)

an, (3.3)

S3 =
∑
q6Q

∑
r|q

x2φ(q/r)f(q, r)2. (3.4)

We have

S2 =
∑
q6Q

∑
r|q

xf(q, r)
q∑
a=1

(a,q)=r

∑
n6x

n≡a (mod q)

an

and the innermost double sum is∑
m6x/r

(m,q/r)=1

amr =
∑
s|q/r

µ(s)
∑

n6x/rs
anrs.
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Hence, by (1.4),

S2 =
∑
r|q

f(q, r)
∑
s|q/r

µ(s)x2f(rs, rs) +O

(∑
q6Q

∑
r|q
|f(q, r)|d(q/r)x2/Ψ(x)

)
.

Therefore, by lemmata 2.1 and 2.4

S2 =
∑
q6Q

x2
∑
r|q

φ(q/r)f(q, r)2 +O(x2Ψ(x)−1(log 2Q)7/2).

Therefore, by (3.1) and (3.4)

V (x,Q) = 2S1 − S3 + [Q]
∑
n6x

a2
n +O(x2Ψ(x)−1(log 2Q)7/2). (3.5)

As is usual in these questions, the main part of our argument is concerned with the
sum S1.

For future reference observe that it may be supposed that x is sufficiently large.

4. The Farey dissection

Here we give only the conclusions as we follow exactly § 4 of Vaughan (this volume),
to which we refer the interested reader for details. Let

Fq(α) =
∑
l6√x
q|l

( ∑
m6x/l

+
∑

√
x<m6min(Q,x/l)

)
e(αlm). (4.1)

Then

Fq(α)� x log(2
√
x/q)

q + qx|β| (q 6 √x, |β| 6 1
2q
−1x−1/2). (4.2)

We suppose that R satisfies

2
√
x 6 R 6 1

2x (4.3)

and define the major arc N(q, a) by

N(q, a) =
[
a

q
− q−1(2R)−1,

a

q
+ q−1(2R)−1

]
(4.4)

and let G be as in (1.10). Then

S1 = S4 +O(xR log x), (4.5)
where

S4 =
∑
q6x/R

q∑
a=1

(a,q)=1

∫
N(q,a)

Fq(α)|G(α)|2 dα. (4.6)

5. The major arcs

Suppose that 1 6 a 6 q 6 x/R, (q, a) = 1 and α ∈ N(q, a). Then, by (4.4),
α = a/q + β, where β ∈ I(q) with

I(q) = [−1
2q
−1R−1, 1

2q
−1R−1]. (5.1)
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Distribution of sequences in arithmetic progression. II 803

Hence, by (4.1) and (4.4)
q∑
a=1

(q,a)=1

∫
N(q,a)

Fq(α)|G(α)|2 =
∫
I(q)

Fq(β)
q∑
a=1

(q,a)=1

|G(a/q + β)|2 dβ.

By (2.6) and (2.7), the integrand here is

ν(q)2Fq(β)|J(β)|2 +∆1(β) +∆2(β),

where

∆1(β) = ν(q)Fq(β)2<J(−β)
q∑
a=1

(a,q)=1

∆(q, a, β)

and

∆2(β) = Fq(β)
q∑
a=1

(a,q)=1

|∆(q, a, β)|2.

Hence, by (2.5), (2.6), (2.8), (2.9) and (4.2),

∆1(β)�
∑
r|q
|f(q, r)|σ(q)x3 log x

qΨ(x)
(1 + x|β|)−1

and

∆2(β)� qx3 log x
Ψ(x)2 (1 + x|β|).

Therefore, by (1.6) and (5.1),
q∑
a=1

(q,a)=1

∫
N(q,a)

Fq(α)|G(α)|2 =
∫
I(q)

g(q)Fq(β)|J(β)|2

+O

(∑
r|q
|f(q, r)|σ(q)x2(log x)2

qΨ(x)
+
x3 log x
Ψ(x)2R

+
x4 log x
qΨ(x)2R2

)
.

Hence, by (2.1),

S4 = S5 +O(x2(log x)9/2Ψ(x)−1 + x4(log x)2R−2Ψ(x)−2), (5.2)
where

S5 =
∑
q6x/R

φ(q)g(q)
∫
I(q)

Fq(β)|J(β)|2 dβ. (5.3)

We now wish to replace each I(q) by a unit interval. We cannot use (4.2) throughout
the new range for β. However, by (4.1) we have the cruder estimate

Fq(β)� xq−1 log x. (5.4)

Then the error introduced by replacing I(q) by a unit interval is

�
∑
q6x/R

g(q)xR log x� xR log x.
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We may also use (5.4) to estimate the contribution when we add the q in the range
x/R < q 6 √x. Thus, by lemma 2.5 and (5.2),

S5 = S6 +O(xR log x)
where

S6 =
∑
q6√x

φ(q)g(q)
∫ 1/2

−1/2
Fq(β)|J(β)|2 dβ. (5.5)

Thus, by (4.5) and (5.2) S1 differs from S6 by an amount which is

� Rx log x+ x2(log x)9/2Ψ(x)−1 + x4(log x)2R−2Ψ(x)−2.

The optimal choice for R here is

R = max(2
√
x, x(log x)1/3Ψ(x)−2/3)

and we observe that this is consonant with (4.3) since Ψ(x) > log x. Hence

S1 = S6 +O(x3/2 log x+ x2(log x)9/2Ψ(x)−1 + x2(log x)4/3Ψ(x)−2/3). (5.6)

6. Completion of the proof of theorem 1.1

By (5.5), (4.1) and (1.10),

S6 =
∑
l6√x

h(l)
( ∑
m6x/l

+
∑

√
x<m6min(Q,x/l)

)
([x]− lm), (6.1)

where

h(l) =
∑
q|l

g(q). (6.2)

By lemma 2.5, ∑
l6√x

h(l)
l

=
∑
r6√x

g(r)
r

∑
m6x/r

1
m
� log x,

and similarly ∑
l6√x

h(l)� √x. (6.3)

Thus the [x] in (6.1) can be replaced by x with a total error � x log x. A straight-
forward calculation shows that( ∑

m6x/l
+

∑
√
x<m6min(Q,x/l)

)
(x− lm)

is
x2

2l
+
x

2l
(
√
x− l)2 − Q2

2l

(
x

Q
− l
)2

+O(x)

when l 6 x/Q and is
x2

2l
+
x

2l
(
√
x− l)2 +O(x)
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when x/Q < l 6 √x. Hence, by (6.2),

2S6 = x2
∑
l6√x

h(l)
l

+ xW (
√
x)−Q2W (x/Q) +O(x3/2), (6.4)

where

W (X) =
∑
l6X

h(l)
l

(X − l)2. (6.5)

Therefore, by (3.5), (3.4), lemma 2.4, (1.6) and (5.6),

V (x,Q) = −x2
∑

√
x<l6x/Q

h(l)
l

+Q
∑
n6x

a2
n + xW (

√
x)−Q2W (x/Q)

+O(x3/2(log x) + x2(log x)9/2Ψ(x)−1 + x2(log x)4/3Ψ(x)−2/3).

(6.6)

Let

C0 =
∞∑
q=1

g(q)
q
, (6.7)

and

C1 = γC0 −
∞∑
q=1

g(q) log q
q

, (6.8)

where γ is Euler’s constant. By (6.2),∑
l6X

h(l)
l

=
∑
q6X

g(q)
q

∑
m6X/q

1
m

=
∑
q6X

g(q)
q

(
log

X

q
+ γ +O(q/X)

)
.

Hence, by lemma 2.5, (6.6) and (6.7),∑
l6X

h(l)
l

= C0 logX + C1 +O(X−1 logX).

Therefore, by (6.6),

V (x,Q) = Q
∑
n6x

a2
n − C0x

2 log
Q√
x

+ xW (
√
x)−Q2W (x/Q)

+O(x3/2 log x+ x2(log x)9/2Ψ(x)−1 + x2(log x)4/3Ψ(x)−2/3).

(6.9)

The final stage of the proof of theorem 1.1 is the investigation of W (X). We have∑
m6X

1
m

(X −m)2 =
∫ X

1

(
X2

u2 − 1
)

[u] du.
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Let B1(u) = u− [u]− 1
2 and B2(u) = 1

2(u− [u])2− 1
2(u− [u])+ 1

12 . Then, by repeated
partial summation the above becomes∑

m6X

1
m

(x−m)2 = X2 logX −X2 +X −
∫ X

1

(
X2

u2 − 1
)
B1(u) du

= X2(logX − 1) +X + (X2 − 1)B2(1)−
∫ X

1

2X2

u3 B2(u) du.

(6.10)

Hence ∑
m6X

1
m

(X −m)2 = X2 logX + C2X
2 +X +O(1), (6.11)

where

C2 = −11
12
− 2

∫ ∞
1

B2(u)
u3 du. (6.12)

Therefore, by (6.2) and (6.5),

W (Y ) =
∑
q6Y

qg(q)
∑
r6Y/q

(
Y

q
− r
)2

= Y 2
∑
q6Y

(log(Y/q) + C2)
g(q)
q

+ Y
∑
q6Y

g(q) +O

(∑
q6Y

qg(q)
)
. (6.13)

The error here is ∫ Y

0

∑
u<q6Y

g(q) du 6 E(Y ),

and completing each sum in (6.13) to infinity introduces an error

� Y 2
∑
q>Y

g(q)
log(q/Y ) + 1

q
+ Y

∑
q>Y

g(q).

The factor (log(q/Y ) + 1)/q is a decreasing function of q when q > Y . Thus the
introduced error is

� Y
∑
q>Y

g(q) 6 E(Y ).

Hence

W (Y ) = Y 2(log Y + C2)C0 − Y 2
∞∑
q=1

g(q) log q
q

+ Y
∞∑
q=1

g(q) +O(E(Y )).

Theorem 1.1 now follows from this, (6.9) and lemma 2.5.

7. The proof of theorem 1.2

By (6.10)∑
m6X

1
m

(X −m)2 = X2 logX + C2X
2 +X + C3 +

∫ ∞
X

2X2

u3 B2(u) du,
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where C2 is given by (6.12) and
C3 = − 1

12 .

Therefore
W (Y ) = N(Y )− P1(Y ) + P2(Y ) + P3(Y ),

where

N(Y ) =
∞∑
r=1

g(r)
(
Y 2

r
log

Y

r
+ C2

Y 2

r
+ Y

)
, (7.1)

P1(Y ) =
∑
r>Y

g(r)
(
Y 2

r
log

Y

r
+ C2

Y 2

r
+ Y

)
,

P2(Y ) = C3

∑
r6Y

rg(r)

and

P3(Y ) =
∫ ∞

1

2Y 2

u3 B2(u)
∑

Y/u<r6Y

g(r)
r

du.

By (1.12) and partial summation∑
r>y

g(r)
r
∼ cη

1 + η
y−1−η,

∑
r>y

g(r)
r

log
r

y
∼ cη

(1 + η)2 y
−1−η

and ∑
r6y

rg(r) ∼ cη

1− η y
1−η

as y →∞. Thus
W (Y ) = N(Y ) + P4(Y ) + P5(Y ),

where
P4(Y ) = cC4Y

1−η,

with
C4 =

2η
1 + η

∫ ∞
1

B2(u)
u2−η du− η

(1 + η)2 −
11η

12 + 12η
− 1− η

12− 12η
,

and
P5(Y ) = o(Y 1−η)

as Y → ∞. To obtain the constant C4 in a more convenient form we observe that
C4 depends only on η and that the above analysis holds in the special case g(r) =
ηr−1−η, and then c = 1. On the other hand, in this case we have

W (Y ) =
1

2πi

∫ 2+i∞

2−i∞
ηζ(s+ 1)ζ(s+ 2 + η)

Y 2+s

s(s+ 1)(s+ 2)
ds

and it follows from standard estimates for the Riemann zeta function that the path
of integration can be moved to the left of the line <s = −1−η. In doing so one picks
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up contributions from the poles at s = 0, s = −1 and s = −1− η. The residues from
the poles at s = 0 and s = −1 give precisely N(Y ) and the residue at −1− η is

Y 1−η2ζ(−η)
1− η2 .

Moreover, the contribution from the new path of integration is
o(Y 1−η).

Hence
C4 =

2ζ(−η)
1− η2 .

Thus
W (Y ) = N(Y ) + c

2ζ(−η)
1− η2 Y

1−η + o(Y 1−η).

Armed with this new estimate we return to V (x,Q). By (6.9), (7.1) and (6.7),

V (x,Q) = Q
∑
n6x

a2
n −Qx

∞∑
q=1

g(q) +Q2M(x/Q)

+O(x3/2 log x+ x2(log x)9/2Ψ(x)−1 + x2(log x)4/3Ψ(x)−2/3),
where

M(y) ∼ c−2ζ(−η)
1− η2 y1−η

as y →∞.
It is easily verified that

Qx(2+η)/(2+2η) 6 x3/2 +Q1+ηx1−η

and theorem 1.2 follows at once.

8. The proof of theorem 1.3

It suffices to estimate A(x; q, a) accurately. Clearly A(x; q, a) = B(x; q, a) + O(1),
where B(x; q, a) is the number of m with m 6 x/q and {λ(mq + a)} < θ. Choose
b and r so that |λr − b| 6 1/r, (b, r) = 1 and r � x2/3. Let r1 = r/(q, r) and
q1 = q/(q, r). For each j with 0 6 j < r1 the number of m with m 6 x/q and
[λar1] + bmq1 ≡ j (mod r1) is

x

qr1
+O(1).

Moreover, for such an m

{λ(mq + a)} = {j/r1 +mq(λ− b/r) + {λar1}/r1},
and with the exception of � x/r + 1 values of j this is

j/r1 + η(x/r2 + 1/r),
where |η| 6 1. Thus

B(x; q, a) =
∑

06j6θr1

(
x

qr1
+O(1)

)
+O

((
x

r
+ 1
)(

x

qr1
+ 1
))

,

and the desired conclusion follows.
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